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Model scaling: recent advances in several domains

Language: 100B ~ over 1T parameters

● GPT-3
● M4 Translate
● GLaM
● PaLM

Vision + text: several billion to 20B parameters:

● DALLE 2
● Imagen
● Parti
● Stable diffusion, …

Speech: 10B parameters

● BigSSL: Google



Large models: model-specific communications

For comparison: small models + large 
data

● Data parallelism: all 
communications are done on the 
gradients

Large models

● Communication within the forward 
and backward passes. Specific to 
the maths of a layer.

E.g., Megatron LM model parallelism 
in transformer layers.



Desired properties for a shared infrastructure

● Separation of concern
○ Separate partitioning and communication from the maths of a layer

● Easy reconfiguration
○ A model implementation can be configured with different model sizes, device cluster 

topologies, training vs serving modes.
○ Partitioning and communication can be very different, but ideally they can be achieved by 

simple reconfigurations.
● Reusability

○ The same core infrastructure can be shared by different models, frameworks, and hardware 
platforms

● Performance
○ Common optimizations can be implemented in this infrastructure.



GSPMD: compiler-based shared infrastructure

TensorFlow

XLA HLO

JAX Pytorch for 
TPU (cloud)

XLA TPU 
backend

XLA GPU 
backend

XLA CPU 
backend

GSPMD

XLA HLO: shared IR for multiple 
frontends and hardware platforms

● Small yet expressive op set

GSPMD

● Built at the level of XLA HLO



GSPMD approach: decoupling model and parallelism
Model code

Write model code 
as if there were a 
single, large device

Annotations Annotate some 
key tensors for 
sharding

XLA SPMD partitionerInfer sharding on all 
tensors

Partitioned 
per-device
graphPartitioned graph with 

collective cross-core 
communication ops 



Single Program, Multiple Data (SPMD) Partitioning

● One-time compilation for all 
partitions, fast compilation to 
thousands of partitions

● Avoids cross-program scheduling 
problems

● Same program runs on all partitions
○ Runtime sets partition IDs
○ Program calculates offsets, padding, etc 

based on runtime partition ID

Same partitioned
graph

TPU 0 TPU 1 TPU 2 TPU 3

0 1 2 3



Adoptions

TensorFlow

xla_sharding API

XLA HLO

JAX

pjit API

GSPMD

Frameworks

Modeling 
libraries

GLaM, M4, Parti, 
BigSSL, LaMDA…

Lingvo, internal 
libraries, …

T5X, Pax, 
Flaxformer, …

T5, PaLM, MUM, 
LaMDA, Parti, …

Announced 
Models

Google internal

● Adoptions across the stack
● Enabled research in multiple domains: 

language, speech, vision, multimodal, …
● Various production-focused projects

Cloud TPUs

● Cohere AI
● LG AI Research
● …

MLPerf:

● Large model training
● Small model performance scaling

https://cloud.google.com/blog/products/ai-machine-learning/accelerating-language-model-training-with-cohere-and-google-cloud-tpus
http://www.koreaherald.com/view.php?ud=20220222000682
https://cloud.google.com/blog/topics/tpus/google-showcases-cloud-tpu-v4-pods-for-large-model-training


Low-level sharding abstraction: per-tensor annotation

2D tensor on 4 partitions

1. Replicated:
● Every partition has 

the full data

0 1

2 3

2. Tiled:
● Every partition has one ¼ data
● Device order can be specified

0
2

1
3

3. Partially Tiled:
● Replicated in subgroups
● Each subgroup has a different 

subset of data

Describes only how data is distributed, not how sharded ops are implemented.

Per-tensor annotation: enables switching between parallelism modes



Framework-level APIs

Framework usually use a higher-level abstraction

● Mesh and axes: sharding is specified as a mapping from mesh axes to tensor 
dimensions

● Device mesh typically stays constant in the whole program. Axes mappings 
change from tensor to tensor

Examples:

● TensorFlow mesh_split()
● JAX pjit()



IR coverage and advanced cases

● XLA HLO has a small op set so we can cover the entire IR
● Improved coverage over the past 2 years

Advanced features

● Uneven partitioning: automatically pads data and masks invalid areas
● Convolution halo exchanges: spatial partitioning of images
● Multi-dimensional partitioning: recursive pattern match
● Coverage of irregular ops: e.g., slice, concatenate, reshape, …

○ These are less noticeable from the high-level model maths, but they are tricky to handle and 
often cause problems if not handled efficiently. 



Sharding propagation

● Reduces the amount of required user annotations
○ Annotating a few tensors in Transformer can achieve all common types of parallelism and 

combinations of them.
● We use a priority-based algorithm to iteratively refine shardings on the graph

○ Merge compatible/orthogonal shardings
○ Propagate in both forward and backward directions
○ Work through control flow (loops, conditionals)
○ Use a priority to make the decision more intuitive: e.g., elementwise ops have highest priority 

so they typically don’t change shardings.



Large-scale sharding on TPU pods

● 2D mesh/torus on TPUv2, v3
● 3D torus on TPUv4
● Thousands of interconnected 

devices, high bandwidth

● In-layer sharding can be applied at 
a very large scale



Transformer training on a TPUv4 pod

Fully-partitioned 2D parallelism

● A simple configuration that 
incorporates several 
techniques

● Achieves 63% FLOPS 
utilization on 200B~480B 
models on 2048 TPU chips

● No need for activation 
recompute in the backward 
pass.

Fully-sharded data 
parallelism/Zero/weight-up
date sharding

Megatron model-parallelism + 
activation scatter/gather 

https://cloud.google.com/blog/topics/tpus/google-showcases-cloud-tpu-v4-pods-for-large-model-training
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://www.microsoft.com/en-us/research/publication/zero-memory-optimizations-toward-training-trillion-parameter-models/
https://arxiv.org/abs/2004.13336
https://arxiv.org/abs/2004.13336
https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/


Easy configurations on more types of models

● Mixture-of-experts (right) in 
GLaM: 1D and 2D shardings

● Other types of models: e.g., 
image spatial partitioning 
with automatic halo 
exchange (below).

1D MoE 2D MoE + in-expert sharding

K
K

K

Spatial 
partitioning



Pipeline parallelism

Pipeline parallelism: cross-layer graph 
partitioning, breaks data into “microbatches”. 
It has very small communication overhead, 
but has 2 challenges

● Pipeline “bubbles”: idle time due to data 
dependency

○ Could be optimized with advanced pipeline 
schedules

● Recompute in the backward pass
○ In the simplest implementation, the whole 

fprop is recomputed in bprop to avoid 
complexity around loop structures.

○ Also a solvable problem

GPipe



Why we need pipelining at Google

With large TPU pods, pipelining is less critical compared to GPU systems. 
However, we still need it for

● Flexibility on using multiple TPU pods (or subsets of pods). Sometimes it’s 
easier to schedule and/or optimize on smaller connected topologies.

● Performance. Even within a TPU pod, pipeline can be better than in-layer 
sharding for “deep-and-thin” type of Transformer configurations.



Pipeline with GSPMD

● As an in-layer partitioning system, GSPMD is compatible with/orthogonal to 
additional pipelining infrastructure

○ GSPMD can be used to partition each pipeline stage
● On the other hand, we introduce a new method, the GSPMD pipeline 

approach
○ It has been successful in many important use cases, including the publicly known BigSSL 

speech model, and the Parti text-to-image model



Alternatively, pipeline is a recurrent layer…

Stage 0

input microbatch



Alternatively, pipeline is a recurrent layer…

Stage 3

Stage 2

Stage 1

Stage 0

input microbatch

vectorize 
over stages
(shardable)

with vectorization…



Stage 3

Stage 2

Stage 1

Stage 0

input microbatch input microbatch

vectorize 
over stages
(shardable)

shifting state and a shifting state…
with vectorization…

Alternatively, pipeline is a recurrent layer…



Stage 3

Stage 2

Stage 1

Stage 0

input microbatch input microbatch

Stage 3

Stage 2

Stage 1

Stage 0

Stage 3

Stage 2

Stage 1

Stage 0

input microbatch

recurrent (scan over 
microbatches)

vectorize 
over stages
(shardable)

shifting state

Alternatively, pipeline is a recurrent layer…



Stage 3

Stage 2

Stage 1

Stage 0

input microbatch input microbatch

Stage 3

Stage 2

Stage 1

Stage 0

Stage 3

Stage 2

Stage 1

Stage 0

input microbatch

recurrent (scan over 
microbatches)

vectorize 
over stages
(shardable)

Collective 
permute

Device 0

Device 1

Device 2

Device 3

GSPMD pipeline: pipeline as sharding



Stage 3

Stage 2

Stage 1

Stage 0

input microbatch input microbatch

Stage 3

Stage 2

Stage 1

Stage 0

Stage 3

Stage 2

Stage 1

Stage 0

input microbatch

recurrent (scan over 
microbatches)

vectorize 
over stages
(shardable)

Collective 
permute

Device 0

Device 1

Device 2

Device 3

● An optimized implementation can 
make the data transfer completely 
overlap with stage compute

● Depending on the backend and mesh 
configurations, transfers can be done 
on either fast interconnects or host 
networks

GSPMD pipeline: communication performance



GSPMD pipeline: limitations and advantages

Obvious limitation: supports only homogeneous 
pipeline stages. However, it is more useful than 
one might think

● Transformer-like models are all supported, 
and they are the majority of recent large 
models

● Encoder-decoder models are also 
supported

Advantages:

● Modularity. Pipeline parallelism can be 
easily applied to part of the model.

● Reuses existing optimizations for 
single-core programs

○ JAX selected recompute 
(“rematerialization”)

○ XLA optimizations on loops
● Simplicity. Does not require new 

capabilities from low-level systems.
● Trivial to support weights shared 

across stages. E.g., shared softmax 
and embedding weights.



GSPMD pipeline: modularity

Typical pipeline implementation: 
sequentially divide the whole graph

GSPMD pipeline is a local configuration on 
a subgraph

pipeline stages pipeline stages In-layer shards

Reshard



A wrapper layer in a modular model library. Implemented in two public libraries: 
Lingvo (TensorFlow) and PAX/Praxis (JAX). They each include 2 pipeline 
schedules optimized for small- and large-batch cases. Example usage:

# Stage definition
one_stage_params  = TransformerLayer .HParams(…)

# Set up pipeline
pipelined_layer_ params = pipeline.LayerwiseShardablePipelined .HParams(
         name='pipeline',
         num_stages=4,
         single_stage_body= one_stage_params )

# Sharding on the stage dimension
pipelined_layer_ params.weight_sharding. stages = ['stages']

GSPMD pipeline implementation and usage

https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=154?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=inner_params&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.inner_params
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;l=52?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;l=55?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=177?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=pipelined_layer_p&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.pipelined_layer_p
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=154?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=inner_params&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.inner_params
https://source.corp.google.com/piper///depot/google3/third_party/py/praxis/layers/pipeline.py;rcl=467572989;l=0
https://source.corp.google.com/piper///depot/google3/third_party/py/praxis/layers/pipeline.py;rcl=467572989;l=50
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=154?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=inner_params&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.inner_params
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=185?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=pipelined_layer_p&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.pipelined_layer_p
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=154?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=inner_params&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.inner_params
https://source.corp.google.com/piper///depot/google3/learning/multipod/pax/pipeline_test.py;bpv=1;bpt=1;l=185?q=pipeline_test%20f:pax&ct=os&sq=package:piper%20file:%2F%2Fdepot%2Fgoogle3%20-file:google3%2Fexperimental&gsn=stages&gs=kythe%3A%2F%2Fgoogle3%3Flang%3Dpython%3Fpath%3Dlearning%2Fmultipod%2Fpax%2Fpipeline_test.py%23module.PipelineTest.test_vmap_single_stage_body.pipelined_layer_p.weight_split_dims_mapping.stages


Implemented pipeline schedules
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Circular. Smaller bubble ratio, good for small-batch cases.
● Interleaved layer assignment. 4-stage, 2-way circular schedule shown above. Similar ideas have 

been used for GPUs outside Google (e.g., new Megatron paper in 2021)

0

0

0

GPipe. Large bubble ratio, good for large-batch cases.



Parti use case: modular pipeline + sharding

1. Quantizer and 
embedding: pure 
data parallelism

2. Encoder: 
pipeline (+ data 
parallelism not 
shown)

3. Decoder: circular 
pipeline (+ data 
parallelism not shown)

4. Softmax and 
loss: pure data 
parallelism

Parti is a text-to-image model using Transformer encoder-decoder architecture.

https://parti.research.google/


● Modularity
○ pipeline parallelism is local to a subcomponent

● Performance
○ perfect load balancing across stages by not including other layers into the pipeline
○ Circular pipeline schedule dramatically reduces the bubbles

● Flexibility
○ switching between data- and pipeline-parallelism 

Parti use case: modular pipeline + sharding



GSPMD takeaways

● Parallelism is a layer-local property. Even pipelining can be made modular.
● Avoid over-specialization: a group of techniques are achieved as merely 

different configurations.
● Non-intrusive APIs accelerates adoption. Parallelism is separated from user 

code to configurations and low-level optimizations.

● A good foundation is important: XLA HLO.
● Details matter as much as high-level designs: need to solve tricky problems 

like how to partition a convolution and a slice op.


